

MUTAH UNIVERSITY Faculty of Engineering Department of Electrical Engineering

Course Syllabus			
Course Code	Course Name	Credits	Contact Hours
0401484	Power Systems Programing Laboratory	1	8:00-10:00 Monday

INSTRUCTOR/COORDINATOR	
Name	Dr. Ziyad Almajali
Email/Office	Ziyad@mutah.edu.jo
Office Hours	12:00-13:00 Sunday, Tuesday, Thursday
Classroom/Time	8:00-10:00

TEXTBOOK			
Title	Lab Manual		
Author/Year/Edition	lition Prepared by Dr. Khaled Alawasa		
Other Supplemental Materials			
Title Power System Analysis and Design			
Title	Power System Analysis and Design		

SPECIFIC COURSE INFORMATION

A. Brief Description of the Content of the Course (Catalog Description)

he Lab contents are based on the two power system analysis prerequisite courses. The Lab starts by introducing the students to one or more of power systems simulation software packages. The following experiments include analysis and performance assessments of power system networks under normal conditions such as the power flow calculations and faulty conditions as well. Simulations are then developed for transients and stability analysis and performance assessments of power systems.

B. Pre-requisites (P) or Co-requisites (C)

Power Systems (2) (0401482) (**P**)

C. Course Type (Required or Elective)

Required

SPECIFIC GOALS

A. Course Learning Objectives (CLOs)

<u>**CLO1**</u>: Develop a program and use a suitable package to solve the power flow problems for simple power systems [5].

<u>CLO2</u>: Use suitable package to study faults at different locations in a power system [6].

CLO3: Develop a program in a suitable package to assess system stability [6].

<u>CLO4</u>: Use of suitable package to study Transients performance of power transformers [6].

B. Student Learning Outcomes (SOs) Addressed by the Course

1	2	3	4	5	6	7

BRIEF LIST OF TOPICS TO BE COVERED		
List of Topics	No. of Weeks	Contact Hours
Introduction to PowerWorld Simulator	2	4
Power flow calculations	2	4
Power system faults studies	2	4
Transient stability simulation	2	4
Linear system analysis: small signal stability and power system stabilizer	2	4
Eigenvalues and non linear system study(PSAT Simulation): small signal stability and power system stabilizer	2	4
Transients performance of power transformers	2	4
Total	14	28

EVALUATION		
Assessment Tool	Due Date	Weight (%)
Mid Exam	According to the university calendar	20
Course Work (Homeworks, Quizzes, Projects,etc.)	One week after being assigned	40
Final Exam	According to the university calendar	40

ABET's Students Learning Outcomes (Criterion # 3)
Relationship to program outcomes

ABET 1-7		Engineering Student Outcomes
1		an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2		an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
3		an ability to communicate effectively with a range of audiences.
4		an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
5	V	an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
6	\checkmark	an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
7		an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.